
P1: IZO

International Journal of Theoretical Physics [ijtp] pp975-ijtp-472203 October 7, 2003 17:50 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 42, No. 8, August 2003 (C© 2003)

Cosmic Strings Coupled With a Massless Scalar Field
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A scalar field generalization of Xanthopoulos’s cylindrically symmetric solutions of the
vacuum-Einstein equations is obtained. The obtained solution preserves the properties
of the Xanthopoulos solution, which are regular on the axis, asymptotically flat, and
free from the curvature singularities. The solution describes a stable, rotating cosmic
string of infinite length interacting with gravitational and scalar waves.
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1. INTRODUCTION

The first exact solution to the vacuum-Einstein equations in cylindrical
geometry is dated back to 1925 by Guido Beck (Beck, 1925). However, the well
known solution in this geometry belongs to Einstein and Rosen (ER) (Einstein
and Rosen, 1937). The solution presented by ER represents first exact radiative
solutions. The solution is radiative because the waves carry away energy from
the mass located at the axis of symmetry. Furthermore, the solution obtained by
ER have two spacelike Killing vectors that are hypersurface orthogonal. The most
general vacuum solution describing cylindrical waves was studied independently
by Kompaneetz (1958) and by Jordanet al.(1960). The cross polarized version of
ER waves was given by Halilsoy (1988).

Chandrasekhar has constructed rather different type of formalism for ob-
taining cylindrical waves with cross polarizations, similar to that used for the
discussion of the collision of plane gravitational waves (Chandrasekhar, 1986).
The main motivation for obtaining new cylindrical waves was to find applications
in general relativity and astrophysics. One of the application arena for cylindri-
cal spacetimes are cosmic strings. Cosmic strings are known to be topological
defects that formed during the cosmological phase transitions as a result of spon-
taneous symmetry breaking of the Grand Unified Theory. Cosmic strings would
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have important consequences for astrophysics. To say the least, it is believed that
the cosmic strings are responsible for galaxy formation and gravitational lensing.

A long time ago, by employing the method of Chandrasekhar, Xanthopoulos
has obtained a family of three-parameter and time-dependent solutions both in
vacuum- Einstein (Xanthopoulos, 1986) (hereafter paper I) and Einstein–Maxwell
theory (Xanthopoulos, 1987) (hereafter paper II ). These solutions are cylindrically
symmetric solutions with remarkable properties that, they are regular on the axis,
asymptotically flat away from the axis, and free from the curvature singularites. One
of the parameters of the solution measures the azimuthal angle deficit that the space-
time exhibits and signals the presence of infinite length of a straight cosmic string.

One of the solutions given in paper II, is just the Einstein–Maxwell extension
of paper I. In that solution, it was shown that the deficit angle near the axis or away
from that axis is independent of the electromagnetic parameter. For a particular
value of deficit parameterα, the deficit angle vanishes and the solution represents
propagation of cylindirical gravitational and electromagnetic fields.

In this paper we present the Einstein-Scalar (ES) extension of paper I, with the
properties outlined in the third paragraph. The solution describes the interaction of
a spinning cosmic string with cylindrical gravitation and scalar fields. Our solution
is one-parameter generalization of paper I. In addition to the parameters of paper
I, we introduce a parameterβ that controls the intensity of the scalar field, such
that forβ = 0 the solution reduces to the one given in paper I. In our analysis we
have shown that in contrast to paper II, the deficit angle becomes dependent on the
scalar field parameterβ.

The paper is organized as follows; in section 2 we review the solution given
in paper I. Section 3 deals with the construction of the Einstein-Scalar solution.
In section 4 we discuss the physical properties of the solution. We conclude the
paper with a discussion in section 5.

2. REVIEW OF THE XANTHOPOULOS’S SOLUTION

This solution represents a three-parameter, time-dependent cylindrically sym-
metric solution of the vacuum Einstein equations. The interesting properties of the
solution are,

(a) it is asymptotically flat.
(b) it admits a regular axis and
(c) it is free of curvature singularities and
(d) it exhibits an angle deficit in going around the axis and it is interpreted as

an infinitely long cosmic string surrounded by gravitational field.

Furthermore, the solution is Petrov type-D, and describes the propagation of
nonradiating gravitational waves. The nonradiating property implies the stability
of the cosmic string when it is interacting with gravitational waves. The technique
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used by Xanthopoulos in obtaining the solution is the one introduced by
Chandrasekhar. In order to provide the regularity on the axis and asymptotic flat-
ness behavior, he adopts the prolate coordinate system which is found very useful
in the description of interacting plane gravitational waves. The following metric
is obtained in this prolate coordinate system.

ds2 = α2X

(
dτ 2

1
− dσ 2

δ

)
− 1δX

Y
dϕ2− Y

X
(dz− q2dϕ)2 (1)

where,

X = (1− pτ )2+ q2σ 2 (2)

Y = p2τ 2+ q2σ 2− 1= p21+ q2δ

q2 = 2qδ(1− pτ )

pY

1 = τ 2+ 1

δ = σ 2− 1

such thatτ ∈ < andσ ≥ 1. The parametersα, p, andq are constants withq2−
p2 = 1. Using the following transformation

ω =
√
1δ, t = τσ

line element (1) transforms into cylindrical coordinates

ds2 = α2X

τ 2+ σ 2
(dt2− dω2)− ω

2X

Y
dϕ2− Y

X
(dz− q2 dϕ)2 (3)

with

2τ 2 =
√

D + t2− ω2− 1, 2σ 2 =
√

D − t2+ ω2+ 1

where
√

D = (ω2− t2+ 1)2+ 4t2 ≥ 0.

Therefore, the solution is analyzed in the cylindrical coordinates while the
field equations are solved in some other coordinates. With reference to the detailed
analysis in paper I, the behavior of the metric functions near the axis (ω→ 0+)
and asymptotically (ω→+∞) are obtained by using the following relations.

Near the axisω ¿ |t |, t = finite

τ ' t − ω2t

2(1+ t2)
+ O(ω4) (4)

σ ' 1+ ω2

2(1+ t2)
+ O(ω4)
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Asymptoticallyω À |t |

τ ' t

ω
+ t(t2− 1)

2ω3
+ O(ω−4) (5)

σ ' ω + (1− t2)

2ω
+ O(ω−2)

In paper I, it was shown that the deficit angle that indicates the presence of
cosmic strings is obtained as

δϕ = 2π (1− e−C) (6)

where,C is theC-energy and it was also shown that this energy is nonradiating.
The absence of radiation can also be justified by calculating the Weyl scalars,
which are all vanishing in the asymptotic region.

3. CONSTRUCTION OF THE EINSTEIN-SCALAR SOLUTION

Cylindrical gravitational waves with cross polarization are described in gen-
eral by the line element of Jordan–Ehlers–Kundt–Kompaneetz (Jordanet al., 1960;
Kompaneetz, 1958) as

ds2 = e2(γ−ψ) (dt2− dω2)− ω
[
ωe−2ψ dϕ2+ e2ψ

ω
(dz+ q2 dϕ)2

]
(7)

In order to couple massless scalar field to the system, we write the Lagrangian
density as follows

L = (λωγω − λtγt )− λ
[
ψ2
ω − ψ2

t + 2
(
φ2
ω − φ2

t

)]− e4ψ

4λ

(
q2

2ω − q2
2t

)
(8)

where φ is the scalar field andγ = γ (ω, t), ψ = ψ(ω, t), φ = φ(ω, t), q2 =
q2(ω, t) andλ is a coordinate condition and for the present problem we choose it
asλ = ω.

The Einstein–Scalar field equations, which are obtained by varying the
Lagrangian described in Eq. (8), are

ψt t − ψω
ω
− ψωω = e4ψ

2ω2

(
q2

2t − q2
2ω

)
(9)

q2t t + q2ω

ω
− q2ωω = 4(q2ωψω − q2tψt ) (10)

γω = ω
(
ψ2

t + ψ2
ω

)+ e4ψ

4ω

(
q2

2t + q2
2ω

)+ 2ω
(
φ2
ω + φ2

t

)
(11)



P1: IZO

International Journal of Theoretical Physics [ijtp] pp975-ijtp-472203 October 7, 2003 17:50 Style file version May 30th, 2002

Cosmic Strings Coupled With a Massless Scalar Field 1879

γt = 2ωψωψt + e4ψ

2ω
q2tq2ω + 4ωφωφt (12)

φωω + φω
ω
− φt t = 0 (13)

The solution to these equations are obtained by employing the formalism of
Chandrasekhar. Hence, we prefer to use the notation of Chandrasekhar (1986).

If we set

ν = γ − ψ and χ = ωe−2ψ (14)

Line element (7) becomes

ds2 = e2ν (dt2− dω2)− ω[χdϕ2+ χ−1 (dz− q2 dϕ)2] (15)

where ∂
∂z and ∂

∂ϕ
are the axial and azimuthal Killing fields andν, χ , andq2 are

functions ofω andt . Using Eq. (14) in the field Eqs. (11) and (12) they transform
into

4νω = − 1

ω
+ ω
χ

[
χ2

t + χ2
ω + q2

2t + q2
2ω

]+ 8ω
(
φ2
ω + φ2

t

)
(16)

νt = ω

2χ2
[χtχω + q2tq2ω] + 4ωφωφt (17)

respectively. In terms of the Ernst potentials (9 and8) defined in paper I Eqs. (16)
and (17) become

(ν + ln
√
9)t = ω

292
(9t9ω +8t8ω)+ 4ωφωφt (18)

(ν + ln
√
9)ω = ω

492

(
92

t +92
ω +82

t +82
ω

)+ 2ω
(
φ2
ω + φ2

t

)
(19)

The scalar fieldφ is coupled to the system by shifting the metric functionν
in accordance with (Eris and Gurses, 1977)

ν = ν0+ 0 (20)

where

0t = 4ωφωφt
(21)

0ω = 2ω
(
φ2
ω + φ2

t

)
andν0, χ0, andq20 satisfy the vacuum Einstein equations and0 is the additional
metric function that arises due to the presence of the scalar field. Integrability
condition for the Eqs. (21) imposes the massless scalar field Eq. (13) as a constraint
condition from which we can generate a large class of ES solution. The solution to
the ES field equations will be obtained in the prolate coordinates as a requirement
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of the formalism of Chandrasekhar. If we set,

ω =
√
1δ, t = τσ, 1 = τ 2+ 1, δ = σ 2− 1

we can express the theory of cylindrical gravitational and scalar waves in the (τ, σ )
coordinates whose range are

τ ∈ < σ ≥ 1

note thatσ = 1 corresponds to the axisω = 0. We find that line element (15)
becomes

ds2 = (τ 2+ σ 2) e2(ν0+0)

[
dτ 2

1
− dσ 2

δ

]
−
√
1δ

[
χ0dϕ2+ χ−1

0 (dz− q20 dϕ)2
]

(22)
In this paper we wish to couple a massless scalar field to the solution presented

in paper I. Hence as an Einstein-vacuum solutionν0, χ0, andq20, we shall make
use of the solution obtained in paper I that describes the cylindrical gravitational
waves with interesting properties discussed. Therefore, the resulting metric that
describes ES solution is given by

ds2 = α2X

τ 2+ σ 2
e20 (dt2− dω2)− ω

2X

Y
dϕ2− Y

X
(dz− q2 dϕ)2 (23)

whereX, Y, andq2 are given in Eq. (2). In terms of the new coordinates, Eq. (21)
becomes

0σ = 21

τ 2+ σ 2

[
σδφ2

σ + σ1φ2
τ − 2τδφσφτ

]
(24)

0τ = 2δ

τ 2+ σ 2

[
2σ1φσφτ − τδφ2

σ − τ1φ2
τ

]
The massless scalar field equation in terms of (τ, σ ) may be written as

(1φτ )τ − (δφσ )σ = 0 (25)

This equation has many solutions. Among the others we wish to adopt as a
scalar field is Bonnor’s nonsingular cylindrical wave solutions found long time
ago (Bonnor, 1957). The interesting property of this solution is that, it is regular
near the axis and vanishes asymptotically. In terms of (τ, σ ) coordinates, the scalar
field is given by

φ(τ, σ ) = βσ

τ 2+ σ 2
(26)

whereβ is a constant parameter measuring the intensity of the scalar wave. Using
Eq. (24) the additional metric function0 is found as

0(τ, σ ) = β21

τ 2+ σ 2

[
4τ 41

(τ 2+ σ 2)3
− 4τ 2 (1+ 2τ 2)

(τ 2+ σ 2)2
+ 1+ 9τ 2

2(τ 2+ σ 2)
− 1

]
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Extending this to the Einstein–Maxwell-Scalar version of paper II is
straightforward.

4. PHYSICAL PROPERTIES OF THE SOLUTION

4.1. Boundary Conditions

In order to interpret the present solution as physically acceptable, we should
impose certain conditions on the behavior of the metric functions near the sym-
metry axis and asymptotically far away from the axis. These conditions, given in
paper I, are as follows:

(a) The symmetry axis should be regular whenω→ 0. This means that, the
squared norm of the rotational (or azimuthal) Killing field (∂

∂ϕ
)∣∣∣∣ ∂∂ϕ

∣∣∣∣2 = −ω
(
χ2+ q2

2

)
χ

(27)

should approach zero likeω2 nearω = 0. This condition guarantees that
the axis is regular.

(b) Asymptotically far away from the symmetry axis, i.e. in all directions such
thatω→∞, the solution should become asymptotically flat. It should
be noted that this solution is not asypmtotically simple in the sense of
Penrose. The reason is the spatial infinity in the directionz→∞ cannot
be carried out, because,∂

∂z is a Killing vector and the metric functions are
independent ofz.

4.2. Behavior Near the Axis:ω¿ t(ω→ 0)

Using the expressions given in Eq. (4) we find the behavior of the metric
functions near the axis (ω→ 0+) as follows

1− pτ ' 1− pt + O (ω2) (28)

δ ' ω2

t2+ 1
+ O (ω4)

X ' [(1− pt)2+ q2] + O (ω2)

Y ' p2(1+ t2)+ O (ω2)

τ 2+ σ 2 ' 1+ t2+ O (ω2)

e20 = e−β
2
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so that:

χ ' A

p2
ω + O(ω3) (29)

q2 ' 2q(1− pt)

p3(1+ t2)2
ω2+ O(ω3)

χ2+ q2
2

χ
' A

p2
ω + O(ω2)

where

A = (1− pt)2+ q2

1+ t2

The norms of the two Killing fields behave like∣∣∣∣ ∂∂ϕ
∣∣∣∣2 = −ωχ2+ q2

2

χ
' − A

p2
ω2+ O(ω3) (30)∣∣∣∣ ∂∂z

∣∣∣∣2 = −ωχ ' p2

A
+ O(ω)

We show that in the limitω→ 0+ is a regular surface of the spacetime. Note
that, the coupling of the scalar field does not play a role in the behavior of the two
Killing fields. Using expressions (28)–(29), we find the metric near the axis;

ds2 ' α2 Ae−β
2

[
dt2− dω2− ω

2eβ
2

p2α2
dϕ2

]

− p2

A
dz2+ 4q (1− pt)ω2

p(1+ t2)2 A
dz dϕ + O(ω3) (31)

4.3. Asymptotic Behavior:ωÀ |t| (ω→∞)

Using the expressions (5), we find that

X ' q2ω2+ (1+ q2− q2t2)+ O(ω−1) (32)

Y ' q2ω2+ (p2− q2t2)+ O(ω−1)

δ ' ω2− t2+ O(ω−1)

q2 ' 2

pq

[
1− pt

ω

]
+ O(ω−2)

τ 2+ σ 2 ' ω2+ (1− t2)+ O(ω−1)

0 ' 0
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Line element (23), asymptotically becomes;

ds2 ' α2q2

[
dt2− dω2− ω2

α2q2
dϕ2

]
−
(

dz− 2

pq
dϕ

)2

(33)

by lettingz→ z̃= z− 2
pqϕ, the last term in the metric is changed and metric (23)

becomes asymptotically flat.

4.4. Existence of Cosmic Strings

Comparing the two metrics obtained for near the axis (ω→ 0) and asymptotic
case (ω→∞), we observe that exact metric (23) allows an angle deficit measured

by eβ
2

α2 p2 near the axis and1
α2q2 asymptotically far away from the axis. This can be

shown as follows.
For any metric in the form of

ds2 = f [dω2+ k2ω2dϕ2] + · · · (34)

with constantk and f independent ofω, the angle deficit near the axis (ω→ 0)
or asymptotically (ω→∞), can be obtained from the definition:

δϕ = 2π − lim
ω→0(∞)

∫ 2π
0
√

gϕϕ dϕ∫ ω
0
√

gωω dω
(35)

Using the above definition, we find the deficit angle as,

δϕ = 2π (1− k) (36)

Exact metric (23) displays a conical singularity on the axis, measured by the
angle deficit, which signals the existence of the cosmic string on the axis.

(δϕ)ax = 2π

(
1− e

β2

2

|α| |p|

)
(37)

Forα = e
β2

2 |p|−1 it removes the angle deficit and implies the absence of the
cosmic string. The axis becomes locally flat, and the metric (23) represents the
propagation of coupled cylindirical gravitational and scalar waves.

In references (Garfinkle, 1985; Gott, 1985; Hiscock, 1985; Vilenkin, 1981)
it has been shown that the mass per unit length of the stringµ0 is related to the
angle deficit by

8πµ0 = δϕ (38)
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Hence, the mass densityµ0 for the present paper becomes

µ0 = 1

4

(
1− e

β2

2

|α||p|

)
(39)

Note that the mass per unit lengthµ0 is constant, does not depend on timet .
Asymptotically the spacetime exhibits an angle deficit given by

(δϕ)asy= 2π

(
1− 1

|α||q|
)

(40)

For the value ofα = e
β2

2 |p|−1 eliminates the angle deficit near the axis while
asymptotically the angle deficit becomes

(δφ)asy= 2π

(
1− p

qe
β2

2

)
(41)

Sinceq2− p2 = 1, this implies that|q| > |p| and gives a larger angle deficit
compared to the result obtained in paper I.

The choiceα = |q|−1, removes the asymptotic angle deficit and the angle
deficit near the axis becomes

(δφ)ax = 2π

(
1− qe

β2

2

p

)
(42)

This choice causes a larger negative angle surplus near the axis compared with
the paper I. The choiceα > e

β2

2 |p|−1 imposes deficit angle both asymptotically and
near the axis. Note that; for this particular case asymptotic angle deficit is greater
than the angle deficit near the axis. This property is also encountered in the analysis
of paper I and paper II. It has been shown in paper II that, the angle deficit near the
axis and asymptotically, are independent of electromagnetic parameter. However,
in our case the angle deficit near the axis depends on the constant parameterβ,
which measures the intensity of the scalar wave but asymptotically the angle deficit
is independent of the scalar field. This is natural and expected because the intensity
of the scalar field is maximum near the axis and approaches zero for far away from
the axis. Hence, in contrast to the electromagnetic case (paper II), intervening
gravitational and scalar waves contribute to the angle deficit.

4.5. Discussion of Energy

One of the important elements in cylindirically symmetric systems is the
C-energy introduced by Thorne (1965). ThisC-energy represents the total gravi-
tational and scalar energy per unit length betweenω = 0 andω at any timet . The
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C-energy in the present paper is described by the quantity.

C = ν + ln
√
9 + 0 (43)

which is equivalent to

C = 1

2
ln

[
α2(p2τ 2+ q2σ 2− 1)

τ 2+ σ 2

]
+ β21

τ 2+ σ 2

×
[

4τ 41

(τ 2+ σ 2)3
− 4τ 2(1+ 2τ 4)

(τ 2+ σ 2)2
+ 1+ 9τ 2

2(τ 2+ σ 2)
− 1

]
(44)

Near the axis (whenσ = 1 orω→ 0), Eq. (44) gives

C ' ln |αp| − β
2

2
(ω→ 0) (45)

while asymptotically it becomes

C ' ln |αq| + ln

∣∣∣∣1− 1

2q2ω2

∣∣∣∣ (ω→∞) (46)

Using Eq. (43) in Eq. (18) and (19) we obtained

Ct = ω

292
(9t9ω +8t8ω)+ 4ωφωφt (47)

Cω = ω

492

(
92

t +82
t +92

ω +82
ω

)+ 2ω
(
φ2
ω + φ2

t

)
(48)

We introduce the null coordinates

u = t + ω (49)

v = t − ω
so that future null infinity corresponds tou→∞ with finite v while past null
infinity corresponds tov→−∞ with finite u. Equations (18) and (19) take the
form

Cu = 1

2
(Ct + Cω) > 0 (50)

Cv = 1

2
(Ct − Cω) (51)

where Eq. (51) measures the rate of radiation of theC energy. For the present
paper, Eq. (51) in terms of (τ, σ ) coordinates takes the form

Cv = −
(
σ
√
1+ τ√δ)2

(τ 2+ σ 2)2

{√
1δ

2Y
+ ωβ2

(τ 2+ σ 2)4

[√
δ(τ 2− σ 2)+ 2τσ

√
1
]2}

(52)
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Using the following asymptotic behavior√
1→ 1

√
δ→ ω τ 2+ σ 2 ' ω2− t2+ 1 (53)

τ 2− σ 2 ' −ω2+ t2− 1 Y ' q2ω2+ (p2− q2t2)

σ ' ω + 1− t2

2ω
τ ' t

ω
+ t(t2− 1)

2ω3

we obtain that

Cv ' − 1

2ω3

(
1+ 2t

ω

)(
1

q2
+ 2β2

)
+ O(ω−5) (54)

It is clear to observe that lim
ω→∞Cv = 0 and the solution is nonradiating.

4.6. The Weyl and Ricci Scalars

The description of the solution in terms of the Weyl and Ricci scalars are
obtained by Newman–Penrose formalism. We introduce new coordinates (θ , ψ) by

τ = sinhψ (55)

σ = coshθ

The line element (23) describing ES solution takes the form

ds2 = U2 (dψ2− dθ2)− V2

1− εε∗ [(1− ε) dz+ i (1+ ε) dϕ] (56)

where

U2 = α2Xe20

and a suitable null basis for the metric is

l = U√
2

(dψ − dθ ) (57)

n = U√
2

(dψ + dθ )

m = − 1√
2

(V L∗−dz− iV L∗+dϕ)

Here

L± = 1± ε√
1− |ε|2

V2 = coshϕ sinhθ

ε = Z − 1

Z + 1
where Z = χ + iq2
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and∗ denotes the complex conjugate. The exact form of the Weyl and Ricci scalars
are too long and complicated. Hence, we prefer to give their asymptotic forms

ψ2 ' − i

2α2q3ω3
(58)

ψ0 ' − 3i

2α2q3ω3
+ β2

2α2q2ω4
+ O(ω−5) (59)

ψ4 ' − 3i

2α2q3ω3
+ β2

2α2q2ω4
+ O(ω−5) (60)

φ00 ' β2

2α2q2ω4

(
1− 1

ω2

)
+ O(ω−7) (61)

φ22 ' β2

2α2q2ω4

(
1− 1

ω2

)
+ O(ω−7) (62)

φ11 ' β2

2α2q2ω4

(
1+ q − 11

2ω2

)
+ O(ω−7) (63)

3 ' − β2

6α2q2ω4

(
1+ q − 11

2ω2

)
+ O(ω−7) (64)

The asymptotic dying-off of the Weyl (likeω−3) and Ricci (likeω−4) scalars
indicates that the present solution is non-radiating. This is totally in agreement
with theC-energy discussion.

The non-radiating character of the present solution indicates the stability of
the cosmic string in the presence of a scalar field as well.

It should be noted that the inclusion of scalar field changes the geometric
intrepretation of the resulting spacetime from Petrov type-D to Petrov type-I.

5. DISCUSSION

In this paper, we have given the scalar field generalization of the vacuum
Einstein solution of paper I, that describes the interaction of rotating cosmic strings
with gravitational waves. The obtained solution is a kind of special solution that
preserves the properties of the background solution; that is, regular on the axis,
asymptotically flat, and free from the curvature singularities. It is shown that the
presence of a scalar field contributes to the angle deficit near the axis. However in
the asymptotic case, the angle deficit is produced completely from the gravitational
waves. Our analysis shows that, the effect of the scalar field tends to increase the
angle deficit. We also note that the inclusion of the scalar field did not change the
stability character of the cosmic string. This is not surprising because the character
of the inserted scalar field is well-behaved and asymptotically vanished. Addition
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of a different scalar field that does not behave well will change all these nice
features completely.
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